Equivalent Fractions $\frac{\mathbf{1}}{\mathbf{2}}$

Shade $\frac{1}{2}$ of each shape. Look at how many squares are shaded (numerator) and the total amount of squares (denominator) and write the equivalent fraction underneath.

1. \qquad 2. \qquad
2. \qquad

3. \qquad 5. \qquad 6. \qquad

7. \qquad 8. \qquad

Equivalent Fractions $\frac{1}{3}$

Shade $\frac{1}{3}$ of each shape. Look at how many squares are shaded (numerator) and the total amount of squares (denominator) and write the equivalent fraction underneath.

1. \qquad

2. \qquad 5. \qquad

3. \qquad

4. \qquad

5. \qquad

6. \qquad

The unshaded squares show $\frac{2}{3}$. Write the equivalent fractions:

Equivalent Fractions $\frac{1}{4}$

Shade $\frac{1}{4}$ of each shape. Look at how many squares are shaded (numerator) and the total amount of squares (denominator) and write the equivalent fraction underneath.

1. \qquad 2. \qquad 3. \qquad

2. \qquad 5. \qquad
3. \qquad

4. \qquad

5. \qquad

The unshaded squares show $\frac{3}{4}$. Write the equivalent fractions:

Equivalent Fractions $\frac{1}{10}$

Shade $\frac{1}{10}$ of each shape. Look at how many squares are shaded (numerator) and the total amount of squares (denominator) and write the equivalent fraction underneath.

1. \qquad

2. \qquad -

3. \qquad
4. \qquad

5. \qquad
6.

\qquad

The unshaded squares show $\frac{9}{10}$. Write the equivalent fractions:

